Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Environ Sci Pollut Res Int ; 30(29): 74386-74397, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2326985

ABSTRACT

In the context of the COVID-19 pandemic, antiviral drugs (AVDs) were heavily excreted into wastewater and subsequently enriched in sewage sludge due to their widespread use. The potential ecological risks of AVDs have attracted increasing attention, but information on the effects of AVDs on sludge anaerobic digestion (AD) is limited. In this study, two typical AVDs (lamivudine and ritonavir) were selected to investigate the responses of AD to AVDs by biochemical methane potential tests. The results indicated that the effects of AVDs on methane production from sludge AD were dose- and type-dependent. The increased ritonavir concentration (0.05-50 mg/kg TS) contributed to an 11.27-49.43% increase in methane production compared with the control. However, methane production was significantly decreased at high lamivudine doses (50 mg/kg TS). Correspondingly, bacteria related to acidification were affected when exposed to lamivudine and ritonavir. Acetoclastic and hydrotropic methanogens were inhibited at a high lamivudine dose, while ritonavir enriched methylotrophic and hydrotropic methanogens. Based on the analysis of intermediate metabolites, the inhibition of lamivudine and the promotion of ritonavir on acidification and methanation were confirmed. In addition, the existence of AVDs could affect sludge properties. Sludge solubilization was inhibited when exposed to lamivudine and enhanced by ritonavir, perhaps caused by their different structures and physicochemical properties. Moreover, lamivudine and ritonavir could be partially degraded by AD, but 50.2-68.8% of AVDs remained in digested sludge, implying environmental risks.


Subject(s)
COVID-19 , Sewage , Humans , Sewage/chemistry , Anaerobiosis , Biofuels , Waste Disposal, Fluid/methods , Antiviral Agents/pharmacology , Ritonavir , Lamivudine/metabolism , Pandemics , Methane/metabolism , Bioreactors
2.
Adv Sci (Weinh) ; 10(10): e2206120, 2023 04.
Article in English | MEDLINE | ID: covidwho-2264801

ABSTRACT

Microplastic (MP) pollution is one of the greatest threats to marine ecosystems. Cold seeps are characterized by methane-rich fluid seepage fueling one of the richest ecosystems on the seafloor, and there are approximately more than 900 cold seeps globally. While the long-term evolution of MPs in cold seeps remains unclear. Here, how MPs have been deposited in the Haima cold seep since the invention of plastics is demonstrated. It is found that the burial rates of MPs in the non-seepage areas significantly increased since the massive global use of plastics in the 1930s, nevertheless, the burial rates and abundance of MPs in the methane seepage areas are much lower than the non-seepage area of the cold seep, suggesting the degradation potential of MPs in cold seeps. More MP-degrading microorganism populations and functional genes are discovered in methane seepage areas to support this discovery. It is further investigated that the upwelling fluid seepage facilitated the fragmentation and degradation behaviors of MPs. Risk assessment indicated that long-term transport and transformation of MPs in the deeper sediments can reduce the potential environmental and ecological risks. The findings illuminated the need to determine fundamental strategies for sustainable marine plastic pollution mitigation in the natural deep-sea environments.


Subject(s)
Ecosystem , Geologic Sediments , Plastics , Microplastics , Methane/metabolism
3.
Nature ; 612(7940): 477-482, 2022 12.
Article in English | MEDLINE | ID: covidwho-2160238

ABSTRACT

Atmospheric methane growth reached an exceptionally high rate of 15.1 ± 0.4 parts per billion per year in 2020 despite a probable decrease in anthropogenic methane emissions during COVID-19 lockdowns1. Here we quantify changes in methane sources and in its atmospheric sink in 2020 compared with 2019. We find that, globally, total anthropogenic emissions decreased by 1.2 ± 0.1 teragrams of methane per year (Tg CH4 yr-1), fire emissions decreased by 6.5 ± 0.1 Tg CH4 yr-1 and wetland emissions increased by 6.0 ± 2.3 Tg CH4 yr-1. Tropospheric OH concentration decreased by 1.6 ± 0.2 per cent relative to 2019, mainly as a result of lower anthropogenic nitrogen oxide (NOx) emissions and associated lower free tropospheric ozone during pandemic lockdowns2. From atmospheric inversions, we also infer that global net emissions increased by 6.9 ± 2.1 Tg CH4 yr-1 in 2020 relative to 2019, and global methane removal from reaction with OH decreased by 7.5 ± 0.8 Tg CH4 yr-1. Therefore, we attribute the methane growth rate anomaly in 2020 relative to 2019 to lower OH sink (53 ± 10 per cent) and higher natural emissions (47 ± 16 per cent), mostly from wetlands. In line with previous findings3,4, our results imply that wetland methane emissions are sensitive to a warmer and wetter climate and could act as a positive feedback mechanism in the future. Our study also suggests that nitrogen oxide emission trends need to be taken into account when implementing the global anthropogenic methane emissions reduction pledge5.


Subject(s)
Atmosphere , Methane , Wetlands , Humans , Communicable Disease Control/statistics & numerical data , COVID-19/epidemiology , Methane/analysis , Ozone/analysis , Atmosphere/chemistry , Human Activities/statistics & numerical data , Time Factors , History, 21st Century , Temperature , Humidity , Nitrogen Oxides/analysis
4.
Environ Sci Pollut Res Int ; 29(54): 81703-81712, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1899267

ABSTRACT

Civil aviation is an important source of air pollutants, but this field has received insufficient attention in China. Based on the standard emissions model of the International Civil Aviation Organization (ICAO) and actual flight information from 241 airports, this study estimated a comprehensive emissions inventory for 2010-2020 by considering the impacts of mixing layer height. The results showed that annual pollutant emissions rapidly trended upward along with population and economic growth; however, the emissions decreased owing to the impacts of the COVID-19 pandemic. In 2020, the emissions of carbon monoxide (CO), nitrogen oxides (NOX), particulate matter (PM), methane (CH4), nitrous oxide (N2O), carbon dioxide (CO2), and water vapor (H2O) were 34.34, 65.73, 0.10, 0.34, 0.40, 14,706.26, and 5733.11 Gg, respectively. The emissions of total volatile organic compounds (VOCs) from China's civil airports in 2020 were estimated at 17.20 Gg; the major components were formic acid (1.70 Gg), acetic acid (1.62 Gg), 1-butylene (1.03 Gg), acetone (0.96 Gg), and acetaldehyde (0.93 Gg). The distribution of pollutant emissions was consistent with the level of economic development, mainly in Beijing, Guangzhou, and Shanghai. In addition, we estimated future pollution trends for the aviation industry under four scenarios. Under the comprehensive scenario, which considered the impacts of economic growth, passenger turnover, cargo turnover, COVID-19, and technological efficiency, the levels of typical pollutants were expected to increase by nearly 1.51-fold from 2010 to 2035.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Greenhouse Gases , Volatile Organic Compounds , Humans , Air Pollutants/analysis , Airports , Air Pollution/analysis , Carbon Dioxide/analysis , Volatile Organic Compounds/analysis , Carbon Monoxide/analysis , Nitrous Oxide , Acetone , Steam , Pandemics , Environmental Monitoring/methods , China , Particulate Matter/analysis , Methane/analysis , Acetaldehyde
5.
Sci Total Environ ; 842: 156721, 2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-1895424

ABSTRACT

Methane (CH4) is a potent greenhouse gas and also plays a significant role in tropospheric chemistry. High-frequency (sub-hourly) measurements of CH4 and carbon isotopic ratio (δ13CH4) have been conducted at Pune (18.53°N, 73.80°E), an urban environment in India, during 2018-2020. High CH4 concentrations were observed, with a mean of 2100 ± 196 ppb (1844-2749 ppb), relative to marine background concentrations. The δ13CH4 varied between -45.11 and -50.03 ‰ for the entire study period with an average of -47.41 ± 0.94 ‰. The diurnal variability of CH4 typically showed maximum values in the morning (08:00-09:00 local time) and minimum in the afternoon (15:00 local time). The deepest diurnal amplitude of ~500 ppb was observed during winter (December-February), which was reduced to less than half, ~200 ppb, during the summer (March-May). CH4 concentration at Pune showed a strong seasonality (470 ppb), much higher than that at Mauna Loa, Hawaii. On the other hand, δ13CH4 records did not show distinct seasonality at Pune. The δ13CH4 values revealed that the significant sources of CH4 in Pune were from the waste sector (enhanced during the monsoon season; signature of depleted δ13CH4), followed by the natural gas sector with a signature of enriched δ13CH4. Our analysis of Covid-19 lockdown (April to May 2020) effect on the CH4 variability showed no signal in the CH4 variability; however, the isotopic analysis indicated a transient shift in the CH4 source to the waste sector (early summer of 2020).


Subject(s)
Air Pollutants , COVID-19 , Air Pollutants/analysis , Communicable Disease Control , Environmental Monitoring , Humans , India , Methane/analysis , Natural Gas/analysis
6.
Org Lett ; 24(24): 4349-4353, 2022 06 24.
Article in English | MEDLINE | ID: covidwho-1890106

ABSTRACT

α-Ketoamides have been found to be an important functional group in a broad spectrum of inhibitors such as the Corona virus and other viruses. Here we report an unprecedented gold-catalyzed 2-fold reaction of a bromoalkyne with anthranils. Hydrolysis of the initial product then directly leads to α-ketoamides. Water addition to the intermediate α-iminoimidoyl halides delivered α-ketoamides from a broad range of bromoalkynes.


Subject(s)
Gold , Methane , Catalysis , Methane/analogs & derivatives
7.
Int J Mol Sci ; 23(6)2022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1742489

ABSTRACT

The pandemic emergency determined by the spreading worldwide of the SARS-CoV-2 virus has focused the scientific and economic efforts of the pharmaceutical industry and governments on the possibility to fight the virus by genetic immunization. The genetic material must be delivered inside the cells by means of vectors. Due to the risk of adverse or immunogenic reaction or replication connected with the more efficient viral vectors, non-viral vectors are in many cases considered as a preferred strategy for gene delivery into eukaryotic cells. This paper is devoted to the evaluation of the gene delivery ability of new synthesized gemini bis-pyridinium surfactants with six methylene spacers, both hydrogenated and fluorinated, in comparison with compounds with spacers of different lengths, previously studied. Results from MTT proliferation assay, electrophoresis mobility shift assay (EMSA), transient transfection assay tests and atomic force microscopy (AFM) imaging confirm that pyridinium gemini surfactants could be a valuable tool for gene delivery purposes, but their performance is highly dependent on the spacer length and strictly related to their structure in solution. All the fluorinated compounds are unable to transfect RD-4 cells, if used alone, but they are all able to deliver a plasmid carrying an enhanced green fluorescent protein (EGFP) expression cassette, when co-formulated with 1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE) in a 1:2 ratio. The fluorinated compounds with spacers formed by six (FGP6) and eight carbon atoms (FGP8) give rise to a very interesting gene delivery activity, greater to that of the commercial reagent, when formulated with DOPE. The hydrogenated compound GP16_6 is unable to sufficiently compact the DNA, as shown by AFM images.


Subject(s)
DNA/genetics , Gene Transfer Techniques , Methane/chemistry , Pyridinium Compounds/chemistry , Surface-Active Agents/chemistry , Transfection/methods , A549 Cells , Cell Survival , DNA/chemistry , DNA/metabolism , Genetic Therapy/methods , Halogenation , Humans , Hydrogenation , Methane/metabolism , Microscopy, Atomic Force , Molecular Structure , Plasmids/chemistry , Plasmids/genetics , Plasmids/metabolism , Pyridinium Compounds/metabolism , Reproducibility of Results , Surface-Active Agents/metabolism
8.
Environ Res ; 206: 112585, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1587836

ABSTRACT

Anaerobic digestion is a consolidated technology to convert sewage sludge and other organic wastes into biogas and a nutrient-rich fertilizer (i.e. digestate). The origin of sewage sludge does not exclude the potential presence of pathogens (e.g. Salmonella spp. and SARS-CoV-2) in mature digestate that hence could represent a source of sanitary concerns when it is spread on soil for agriculture purpose. Therefore, an experimental study aimed at proving the sanitizing effect of a full scale thermophilic high solids anaerobic digestion process was conducted by monitoring the hygienic characteristics of mature digestate. Although Salmonella spp. was detected in the sewage sludge fed to the full scale plant, the anaerobic digestion treatment demonstrated sanitization capacity since the monitored pathogens were never found in the mature digestate over the entire duration of the monitoring survey. Furthermore, tests on the regrowth of Salmonella Typhimurium and Escherichia coli, artificially inoculated on mature digestate, were also conducted under both anaerobic and aerobic conditions with the aim to assess the effectiveness of mature digestate as microbial growth medium. Concentrations of Salmonella Typhimurium and Escherichia coli were drastically reduced after a short time of incubation under anaerobic process and the two microorganisms already resulted undetectable after 24-48 h, whereas, under aerobic conditions, two microorganisms' concentrations were stably high for longer than 10 days. The combination of no free oxygen, high temperature, anaerobic metabolites (e.g. total ammonium nitrogen, and volatile fatty acids) production, bacteria competition and lack of nutritional elements in mature digestate considerably reduced in 24-48 h the sanitary risks associated to accidently contaminated digestate. Furthermore, a SARS-CoV-2 monitoring survey on mature digestate during 13 months, resulted in the absence of the virus RNA in the analyzed digestate.


Subject(s)
COVID-19 , Sewage , Anaerobiosis , Bioreactors , Digestion , Escherichia coli , Humans , Methane , SARS-CoV-2 , Salmonella typhimurium/genetics
9.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Article in English | MEDLINE | ID: covidwho-1510693

ABSTRACT

The COVID-19 global pandemic and associated government lockdowns dramatically altered human activity, providing a window into how changes in individual behavior, enacted en masse, impact atmospheric composition. The resulting reductions in anthropogenic activity represent an unprecedented event that yields a glimpse into a future where emissions to the atmosphere are reduced. Furthermore, the abrupt reduction in emissions during the lockdown periods led to clearly observable changes in atmospheric composition, which provide direct insight into feedbacks between the Earth system and human activity. While air pollutants and greenhouse gases share many common anthropogenic sources, there is a sharp difference in the response of their atmospheric concentrations to COVID-19 emissions changes, due in large part to their different lifetimes. Here, we discuss several key takeaways from modeling and observational studies. First, despite dramatic declines in mobility and associated vehicular emissions, the atmospheric growth rates of greenhouse gases were not slowed, in part due to decreased ocean uptake of CO2 and a likely increase in CH4 lifetime from reduced NO x emissions. Second, the response of O3 to decreased NO x emissions showed significant spatial and temporal variability, due to differing chemical regimes around the world. Finally, the overall response of atmospheric composition to emissions changes is heavily modulated by factors including carbon-cycle feedbacks to CH4 and CO2, background pollutant levels, the timing and location of emissions changes, and climate feedbacks on air quality, such as wildfires and the ozone climate penalty.


Subject(s)
Air Pollution , Atmosphere/chemistry , COVID-19/psychology , Greenhouse Gases , Models, Theoretical , COVID-19/epidemiology , Carbon Dioxide , Climate Change , Humans , Methane , Nitrogen Oxides , Ozone
10.
Philos Trans A Math Phys Eng Sci ; 379(2210): 20200459, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1494168

Subject(s)
Carbon Dioxide , Methane , Seasons
11.
Dtsch Med Wochenschr ; 146(7): 441-445, 2021 04.
Article in German | MEDLINE | ID: covidwho-1155710

ABSTRACT

The functional gastrointestinal disorders (FGIDs) have a high prevalence and are associated with high healthcare costs. The diagnosis of these diseases could be difficult and require func-tional tests such as high-resolution manometry (HRM) of the esophagus, anorectal manometry and H2-Breathtests. Due to the COVID-19 Pandemic and the fear of infections there was a marked reduction in the number of performed exams in the last months - nevertheless some exams are necessary, in order to exclude or to diagnose important and dangerous diseases like Achalasia. Goal of this article is to present some new and relevant developments in the field. The HRM of the esophagus is the diagnostic standard for Achalasia, a rare clinical condi-tion associated to dysphagia - new European guidelines suggests a safe strategy in perform-ing the pneumatic dilatation.The intestinal methanogen overgrowth (IMO) is a clinical condition caused by a high production of methane in the small intestine due to overgrowth of Methanobrevibacter smithii, this condition could be in some patients associated with irritable bowel syndrome.


Subject(s)
COVID-19/complications , Gastrointestinal Diseases/diagnosis , Archaea/metabolism , Breath Tests , Esophageal Achalasia/diagnosis , Esophagus/physiopathology , Gastrointestinal Diseases/economics , Gastrointestinal Diseases/epidemiology , Humans , Intestine, Small/microbiology , Manometry , Methane/biosynthesis , Practice Guidelines as Topic , Rectum/physiopathology
12.
Sci Rep ; 10(1): 18688, 2020 10 29.
Article in English | MEDLINE | ID: covidwho-989915

ABSTRACT

The COVID-19 pandemic caused drastic reductions in carbon dioxide (CO2) emissions, but due to its large atmospheric reservoir and long lifetime, no detectable signal has been observed in the atmospheric CO2 growth rate. Using the variabilities in CO2 (ΔCO2) and methane (ΔCH4) observed at Hateruma Island, Japan during 1997-2020, we show a traceable CO2 emission reduction in China during February-March 2020. The monitoring station at Hateruma Island observes the outflow of Chinese emissions during winter and spring. A systematic increase in the ΔCO2/ΔCH4 ratio, governed by synoptic wind variability, well corroborated the increase in China's fossil-fuel CO2 (FFCO2) emissions during 1997-2019. However, the ΔCO2/ΔCH4 ratios showed significant decreases of 29 ± 11 and 16 ± 11 mol mol-1 in February and March 2020, respectively, relative to the 2011-2019 average of 131 ± 11 mol mol-1. By projecting these observed ΔCO2/ΔCH4 ratios on transport model simulations, we estimated reductions of 32 ± 12% and 19 ± 15% in the FFCO2 emissions in China for February and March 2020, respectively, compared to the expected emissions. Our data are consistent with the abrupt decrease in the economic activity in February, a slight recovery in March, and return to normal in April, which was calculated based on the COVID-19 lockdowns and mobility restriction datasets.


Subject(s)
Carbon Dioxide/analysis , Coronavirus Infections/epidemiology , Fossil Fuels/statistics & numerical data , Greenhouse Effect/statistics & numerical data , Pneumonia, Viral/epidemiology , Atmosphere/chemistry , COVID-19 , China , Coronavirus Infections/economics , Humans , Japan , Methane/analysis , Pandemics/economics , Pneumonia, Viral/economics
SELECTION OF CITATIONS
SEARCH DETAIL